#!/usr/bin/env python """ Copyright (c) 2015 Computational Biomechanics (CoBi) Core, Department of Biomedical Engineering, Cleveland Clinic Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------- tdms_plotting.py DESCRIPTION: Python script to read a tdms file and create plots for data. Places plots in new directory with the path of the tdms file in svg and png formats. Processes kinetic and kinematic data, which is also plotted. One must place the name of of tdms files in text file and include as argument for script to run properly. Finally, the script can compare AP laxity data for reproducibility testing. If performing this analysis, place all relevant files in text file, include as argument when running script, and enter the value '1' when prompted. This will produce plots comparing all three AP laxity tests and a table of RMSD values with minimums, maximums, and means for each axis for kinematic and kinetic data for the three AP laxity tests. REQUIREMENTS: Python (http://www.python.org) nptdms (https://pypi.python.org/pypi/npTDMS/) matplotlib (http://matplotlib.org/) NumPy (http://www.numpy.org/) DEVELOPERS: Omar M. Gad & Ahmet Erdemir Computational Biomodeling (CoBi) Core Department of Biomedical Engineering Lerner Research Institute Cleveland Clinic Cleveland, OH gado@ccf.org erdemira@ccf.org Modified by Erica E. Neumann to be used with animation/plotting script. Computational Biomodeling (CoBi) Core Department of Biomedical Engineering Lerner Research Institute Cleveland Clinic Cleveland, OH morrile2@ccf.org """ import sys from nptdms import TdmsFile import numpy as np import os import pandas as pd """ This function extracts all the information and data from the tdms file. Then, a function (tdms_plot) plots the raw data. Desired kinetic data is processed via the function kinetics_data. This is used to create processed plots for the actual kinetic and kinematic data from the tdms file. """ def tdms_contents(argv): # f = open(argv[-1]) # files = f.read().splitlines() processed = False files = argv[-1] for file in files: print file tdms_file = TdmsFile(file) file_name = os.path.split(file)[1] groups = tdms_file.groups() path = os.path.abspath(file) title = os.path.splitext(file_name)[0] root = os.path.splitext(path)[0] base = os.path.split(root)[0] # prints list of groups and extracts channels from tdms file for group in groups: channels = tdms_file.group_channels(group) # creates empty lists to place information later channel_list = [] channel_data_list = [] channel_unit_list = [] channel_time_list = [] # extracts information from each channel for channel in channels: try: channel_label = channel.properties["NI_ChannelName"] channel_units = channel.properties['NI_UnitDescription'] channel_data = channel.data channel_time = channel.time_track() # creates lists for plotting channel_data_list.append(channel_data) channel_list.append(channel_label) channel_unit_list.append(channel_units) channel_time_list.append(channel_time) except: break #Plots raw data if group has six channels (desired groups are listed for plotting) if len(channel_data_list) == 6 and (group == 'State.JCS Load' or group == 'State.Knee JCS' or group == 'Kinetics.JCS.Desired' or group == 'Kinematics.JCS.Desired' or group == 'State.JCS' or group == 'State.Knee PTFJ'): tdms_plot(title, group, channel_unit_list, channel_data_list, channel_time_list, channel_list, root, processed) else: pass #Find appropriate indices for plotting - Use Desired Kinematics for passive flexion and Desired Kinetics for all other tests. if ("passive" in file.lower() and "flexion" in file.lower()) and group == 'Kinematics.JCS.Desired': index_list = find_indices(channel_list, channel_data_list, channel_time_list, title, group, channel_unit_list, root) elif group == 'Kinetics.JCS.Desired' and ("passive" not in file.lower() and "flexion" not in file.lower()): print file.lower() index_list = find_indices(channel_list, channel_data_list, channel_time_list, title, group, channel_unit_list, root) else: pass df_master = pd.DataFrame() # Plot processed data for group in groups: channels = tdms_file.group_channels(group) # creates empty lists to place information later channel_list = [] channel_data_list = [] channel_unit_list = [] channel_time_list = [] # extracts information from each channel for channel in channels: try: channel_label = channel.properties["NI_ChannelName"] channel_units = channel.properties['NI_UnitDescription'] channel_data = channel.data channel_time = channel.time_track() # creates lists for plotting channel_data_list.append(channel_data) channel_list.append(channel_label) channel_unit_list.append(channel_units) channel_time_list.append(channel_time) except: break if (group == 'State.JCS Load' or group == 'State.Knee JCS' or group == 'Kinetics.JCS.Desired'or group == 'Kinematics.JCS.Desired' or group == 'State.JCS' or group == 'State.Knee PTFJ'): df = extract_data( index_list, title, group, channel_unit_list, channel_data_list, channel_time_list, channel_list, root, processed) df_master = pd.concat([df_master, df], axis=1) else: pass df_master.to_csv(file[:-4]+'csv') return index_list """ Plots data for entire tdms file. Saves plot in the folder in the root of the tdms file. If data is processed, file for plot will include '_Extracted' in name. """ import matplotlib.pyplot as plt def tdms_plot(title, groups, units, data, time, channels, root, processed): point = ['s', 'D', 'o', 's', 'D', 'o'] fig = plt.figure(figsize=(9,6)) fig.suptitle(title, fontsize=16) #Creates two graphs one figure ax1 = plt.subplot(121) ax2 = plt.subplot(122) subplots = [ax1, ax2] for i in range(3): ax1.set_ylabel(units[i], fontsize=12) if processed == True: ax1.plot(time[i], data[i], point[i], label = channels[i]) else: ax1.plot(time[i], data[i], label = channels[i]) for i in range(3, 6): ax2.set_ylabel(units[i], fontsize=12) if processed == True: ax2.plot(time[i], data[i], point[i], label = channels[i]) else: ax2.plot(time[i], data[i], label = channels[i]) for subplot in subplots: subplot.set_xlabel('Time (s)', fontsize=12) subplot.legend(loc = 'best') subplot.set_title(groups, fontsize = 12) subplot.grid(True) # plt.show() #Saves files as .png and .svg if not os.path.exists(root): os.makedirs(root) if processed == True: fig.savefig(root + '/' + groups + '_Extracted' + '.png', format = "png", dpi = 100) fig.savefig(root + '/' + groups + '_Extracted' + '.svg', format = "svg") else: fig.savefig(root + '/' + groups + '.png', format = "png", dpi = 100) fig.savefig(root + '/' + groups + '.svg', format = "svg") plt.close(fig) """ The function kinetics_data determines the index at which consecutive values are the same from the desired kinetics data. Returns index_list, which is an array for the final index at which the values are the same. This data is then plotted using the function tdms_plot. One may use the start point, or find midpoint by creating range of values using start point and end point of each list. """ def find_indices(channel_list, channel_data_list, channel_time_list, title, group, channel_unit_list, root): if 'Kinetics' in group: index_le = [] index_ls = [] for channel_data, channel_label in zip(channel_data_list, channel_list): a = channel_data i = 0 index_end = [] index_start = [] while i < len(a) - 1: j = i + 1 if j == len(a) - 1: #appends the last value of the window to the list # index_end.append(j) #appends the first value of the window to the list # index_start.append(i) i = j break if abs(a[i] - a[j]) < 0.000000001: for k in range(j + 1, len(a)): if abs(a[i] - a[k]) < 0.000000001: if k == len(a) - 1: #appends the last value of the window to the list index_end.append(k) #appends the first value of the window to the list index_start.append(i) i = k break else: continue else: #appends the last value of the window to the list index_end.append(k - 1) #appends the first value of the window to the list index_start.append(i) i = k break else: i = j index_end_array = np.array(index_end) index_start_array = np.array(index_start) index_ls.extend(index_start_array) indices_start = list(set(index_ls)) indices_st = sorted(indices_start) index_le.extend(index_end_array) indices_end = list(set(index_le)) indices = sorted(indices_end) #Special scenario in which beginning of step in loading condition #is not zero resulting in change in number of values in indics_st while len(indices_st) > len(indices): for p in range(len(indices)): if indices[p] > indices_st[p+1]: indices_st.remove(indices_st[p+1]) break #Creates list of six sets of key "time index" #To be applied to each channel to extract data (may use indices_st) # index_list_start = [indices_st, indices_st, indices_st, indices_st, indices_st, indices_st] elif 'Kinematics' in group: flex_idx = [i for i, x in enumerate(channel_list) if "Flexion" in x][0] data = np.array(channel_data_list[flex_idx]) indices = [] angle_increments = np.arange(0, np.max(data), 5) for a in angle_increments: a_ind = np.where(np.abs(data - a)<0.05)[0] indices.append(a_ind[0]) indices.append(a_ind[-1]) indices = sorted(indices) index_list_end = [indices, indices, indices, indices, indices, indices] return index_list_end """ Extracts data from other groups and channels for plotting based on processed time_end found in kinetics_data. """ def extract_data(index_list, title, group, channel_unit_list, channel_data_list, channel_time_list, channel_list, root, processed): title_p = title + '_extracted' processed = True data_processed = [] time_processed = [] range_list = [] data_info_list = [] #Unpack channels for index_end, channel_data, channel_time in zip(index_list, channel_data_list, channel_time_list): data = [] time = [] #Unpack indices for index in index_end: data.append(channel_data[index]) data_array = np.array(data) time.append(channel_time[index]) time_array = np.array(time) data_max = round(max(data_array), 8) data_min = round(min(data_array), 8) data_mean = round(np.mean(data_array), 8) range_data = data_max - data_min data_info = [data_max, data_min, data_mean] data_info_list.append(data_info) range_list.append(range_data) data_processed.append(data_array) time_processed.append(time_array) tdms_plot(title_p, group, channel_unit_list, data_processed, time_processed, channel_list, root, processed) df = pd.DataFrame() df['Extracted Time Points [s]'] = time_processed[0] for k in range(len(channel_list)): df[channel_list[k] + ' ' + '[' + channel_unit_list[k] + ']'] = data_processed[k] return df if __name__ == "__main__": tdms_contents(sys.argv)